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Melvin Universe is an exact axially symmetric solution of Einstein gravity in a back-

ground with magnetic flux [1]. It arises naturally as a Kaluza-Klein reduction of twisted

flat space

ds2 = −dt2 + d~x2 + dr2 + r2(dϕ + ηdz)2 + dz2 , (1)

along the coordinate z. The twist is parameterized by variable η. The fact that z ∼ z+2πR

is periodic makes the twist deformation physical.

Melvin universes has a natural embedding in string theory [2 – 4]. Simply embed (1)

in 11-dimensional supergravity. Reducing along z gives rise to a background in type IIA

string theory with a background of magnetic RR 2-form field strength.

Along similar lines, one can embed (1) in type IIA supergravity and T-dualize along

z. This gives rise to a background in type IIB string theory

ds2 = −dt2 + d~x2 + dr2 +
r2dϕ2

1 + η2r2
+

1

1 + η2r2
dz̃2

B =
ηr2

1 + η2r2
dϕ ∧ dz̃

eφ =

√

1

1 + η2r2

z̃ = z̃ + 2πR̃, R̃ =
α′

R
, (2)

with an axially symmetric magnetic NSNS 3-form field strength in the background. String

theories in backgrounds like (2) are very special in that the world sheet theory is exactly

solvable [5 – 10]. Quantization of open strings in Melvin backgrounds have also been studied

and was shown to be exactly solvable [11, 12] as well.

Embedding D-branes in Melvin universes can give rise to interesting field theories

in the decoupling limit. A D3-brane extended along t, z̃, and two of the ~x coordinates

gives rise to a non-local field theory known as the “dipole” theory [13, 14]. Orienting

the D3-brane to be extended along the t, r, ϕ, and z̃ coordinates, on the other hand,

gives rise to a non-commutative gauge theory with a non-constant non-commutativity

parameter1 [16, 17]. These are field theories, whose Lagrangian [17] is expressed most

naturally using the deformation quantization formula of Kontsevich2 [19]. Field theories

arising as a decoupling limits of various orientations of D-branes in Melvin and related

closed string backgrounds along these lines were tabulated and classified in table 1 of [16].3

To show that the decoupled field theory is a non-commutative field theory, the authors

of [16] presented the following arguments:

1The first explicit construction of models of this type is [15].
2General construction of non-commutative field theory on curved space-time with non-constant non-

commutativity parameter, arising from D-branes in non-vanishing H field background, and their relation

to the deformation quantization formula of Kontsevich, was first discussed in [18].
3More recently, a novel non-local field theory, not included in the classification of [16], was discovered [20,

21].
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• The application of Seiberg-Witten formula4[22]

(

G +
θ

2πα′

)µν

= [(g + B)µν ]
−1 (3)

to the closed string background (2) gives the following open string metric and the

non-commutativity parameter

Gµνdxµdxν = −dt2 + dr2 + r2dϕ2 + dz2

θϕz = 2πα′η (4)

which are finite if α′ is scaled to zero keeping ∆ = α′η fixed.

• Solution of the classical equations of motion of an open string traveling freely on the

D3-brane with angular momentum J has a dipole structure whose size is given by [16]

L = θϕzJ . (5)

Another suggestive argument is the similarity between α′ → 0 limit of critical string

theory and the boundary Poisson sigma-model [23] as was pointed out, e.g., in [24]. As was

emphasized in [24], however, the two theories are not to be understood as being equivalent

or continuously connected. This apparent similarity therefore does not constitute a proof

that the decoupled theory is a non-commutative field theory.

A physical criteria for non-commutativity is the Moyal-like phase factor in scattering

amplitudes. Scattering amplitudes of open strings ending on a D-brane can be computed

along the lines reviewed in [25]. In the case of the constant non-commutativity parameter,

one can show very explicitly that

〈eip1x(τ1)eip2x(τ2). . .eipnx(τn)〉G,θ =e−
i
2

P

n>m pn
i θijpm

j ǫ(τn−τm)〈eip1x(τ1)eip2x(τ2). . .eipnx(τn)〉G,θ=0

(6)

which implies that the scattering amplitudes receive corrections in the form of the Moyal

phase factor [26, 27, 22]. The goal of this article is to derive the analogous statement (60)

for the model of [16, 17]. Once (60) is established in polar coordinates, the connection

to Kontsevich formula follows from performing a change of coordinates to the rectangular

coordinate system and a non-local field redefinition as is described in [28, 17].

A useful first step in this exercise is to reproduce the master relation (6) in a slightly

different formalism than what was used in [22]. Let us begin by constructing the closed

string background as follows. Start with flat space

ds2 = dy′2 + dz̃2 , (7)

where y and z̃ are compactified with period L = 2πR. Then,

I T-dualize along the z direction so that the metric becomes

ds2 = dy′2 + dz2 . (8)

4The normalization of B field is such that BHashimoto−Thomas = 2πα
′
BSeiberg−Witten.
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Figure 1: In I and II, the thick line denotes a D2-brane, and the dotted line is the minimum

energy configuration of the open strings ending on the D2-branes. The I and II are related by

coordinate transformation y′ = y+ηz. III is the T-dual of II, and the shaded region in III denotes

a D3-brane.

II Twist by shifting the coordinates y′ = y + ηz

ds2 = (dy + ηdz)2 + dz2 . (9)

III T-dualize on z so that

ds2 =
1

1 + η2
(dy2 + dz̃2), B =

η

1 + η2
dy ∧ dz̃ . (10)

The open string metric associated to this background is

Gµνdxµdxν = dy2 + dz̃2, θyz̃ = 2π∆2 (11)

if we scale

∆2 = α′η . (12)

The transformation of the coordinates and the orientation of the branes are illustrated in

figure 1. This sequence of dualities was referred to as the “Melvin shift twist” in [16].

The approach of [22] was to work directly in the duality frame III, but one can just as

easily work in a framework which makes the T-duality between duality frame II and III

manifest, by working with a sigma model of the form

S =
1

2πα′

∫

dσ1dσ2

[

1

2
δab

(

∂ay∂by + 2η∂ayVb + (1 + η2)VaVb

)

+ iǫab∂az̃Vb

]

(13)

where we have chosen to work in conformal gauge in Eucledian signature. This action

utilizes the Bushar’s formulation of T-duality [29]. To see this more explicitly, consider

– 3 –
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integrating out the field z̃. This imposes the constraint

dV = 0 → Va = ∂az (14)

which brings the action (13) into the form

S =
1

2πα′

∫

dσ1dσ2

[

1

2
δab

(

∂ay∂by + 2η∂ay∂bz + (1 + η2)∂az∂bz
)

]

(15)

which is the sigma model for the duality frame II. On the other hand, integrating out V

first gives rise to a sigma model of the form

S =
1

2πα′

∫

dσ1dσ2

[(

1

1 + η2

)

1

2
δab (∂ay∂by + ∂az̃∂bz̃) + i

(

η

1 + η2

)

ǫab∂ay∂bz̃

]

(16)

which is the string action for the duality frame III.

In extracting non-commutative gauge theory as a decoupling limit, we are interested

in embedding a D-brane extended along the y and z̃ coordinates in the duality frame III.

We must therefore take the sigma model to be defined on a Riemann surface with one

boundary, which we take to be the upper half plane. It is also necessary to impose the

appropriate boundary condition for all of the world sheet fields. We impose the boundary

condition which is free along the y direction and Dirichlet along the z direction:

∂ny(σ, σ̄) + ηVn(σ, σ̄)|∂Σ = 0 , (17)

Vt|∂Σ = ∂tz|∂Σ = 0. (18)

Using the equation of motion from the variation of Va field

η∂by + (1 + η2)Vb + iǫab∂az̃ = 0 (19)

and (18), we infer

∂nz̃ − iη∂ty = 0 . (20)

The boundary conditions (17) and (20) are precisely the boundary condition imposed in

the analysis of [22].

In order to complete the derivation of (6), we add a source term

e−Ssource =
∏

n

eikyny(σn,σ̄n)+ikznz̃(σn,σ̄n) = e
P

n(ikyny(σn,σ̄n)+ikznz̃(σn,σ̄n)) (21)

to the action (13). Integrating out the V fields and bringing the sigma model (13) into

duality frame III would lead to identical computation as what was described in [22] to

derive (6). We will show below that the same conclusion can be reached using a slightly

different argument which turns out to easily generalize to the case of Melvin deformed

theories [16, 17].

The approach we take here is to go to the duality frame I. This brings the sigma

model (13) to a simpler form

S =
1

2πα′

∫

dσ1dσ2

[

1

2
δab

(

∂ay
′∂by

′ + ∂az∂bz
)

]

. (22)
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The z̃ field in the vertex operator now plays the role of a disorder operator of the dual

field z. It has the effect of shifting the Dirichlet boundary condition, incorporating the fact

that strings are stretched along the z direction in frames I and II. Also, the fact that the

periodicity in (y′, z) coordinate system are twisted

(y′, z) = (y′ + ηLn, z + Ln) (23)

requires an insertion of a disorder operator for the y′(σ, σ̄) field as well. We therefore find

that the source term has the form

e−Ssource =
∏

n

eikyny′(σn,σ̄n)+iηkzn ỹ′(σn,σ̄n)−iηkynz(σn,σ̄n)+ikznz̃(σn) . (24)

The boundary condition is now simply Neumann for y′

∂ny′(σ, σ̄) = 0
∣

∣

∂Σ
, (25)

and Dirichlet for z

∂tz(σ, σ̄) = 0|∂Σ . (26)

In this form, y′ and the z sector decouple, allowing their correlators to be computed

separately. In order to compute the correlation functions involving order and disorder

operators with boundary conditions (25) and (26), it is convenient to decompose the fields

into holomorphic and anti holomorphic parts

y′(σ, σ̄) = y′(σ) + ȳ′(σ̄) , ỹ′(σ, σ̄) = y′(σ) − ȳ′(σ̄) , (27)

z(σ, σ̄) = z(σ) + z̄(σ̄) , z̃′(σ, σ̄) = z(σ) − z̄(σ̄) . (28)

Their correlation functions are given by

〈y′(σ1)y
′(σ2)〉 = −

1

2
α′ log(σ1 − σ2) (29)

〈ȳ′(σ1)ȳ
′(σ2)〉 = −

1

2
α′ log(σ̄1 − σ̄2) (30)

〈ȳ′(σ̄1)y
′(σ2)〉 = −

1

2
α′ log(σ̄1 − σ2) (31)

〈z(σ1)z(σ2)〉 = −
1

2
α′ log(σ1 − σ2) (32)

〈z̄(σ̄1)z̄(σ̄2)〉 = −
1

2
α′ log(σ̄1 − σ̄2) (33)

〈z̄(σ̄1)z(σ2)〉 =
1

2
α′ log(σ̄1 − σ2), (34)

from which we infer

〈y′(σ1, σ̄1)y
′(σ2, σ̄2)〉 = −

1

2
α′(log(σ1−σ2)+log(σ1− σ̄2)+log(σ̄1−σ2)+log(σ̄1− σ̄2)) (35)

〈ỹ′(σ1, σ̄1)y
′(σ2, σ̄2)〉 = −

1

2
α′(log(σ1−σ2)+log(σ1− σ̄2)− log(σ̄1−σ2)− log(σ̄1− σ̄2)) (36)
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〈ỹ′(σ1, σ̄1)ỹ
′(σ2, σ̄2)〉 = −

1

2
α′(log(σ1−σ2)−log(σ1−σ̄2)−log(σ̄1−σ2)+log(σ̄1−σ̄2)) (37)

〈z̃(σ1, σ̄1)z̃(σ2, σ̄2)〉 = −
1

2
α′(log(σ1−σ2)+ log(σ1 − σ̄2)+ log(σ̄1 −σ2)+ log(σ̄1− σ̄2)) (38)

〈z(σ1, σ̄1)z̃(σ2, σ̄2)〉 = −
1

2
α′(log(σ1−σ2)+ log(σ1 − σ̄2)− log(σ̄1 −σ2)− log(σ̄1− σ̄2)) (39)

〈z(σ1, σ̄1)z(σ2, σ̄2)〉 = −
1

2
α′(log(σ1−σ2)− log(σ1− σ̄2)− log(σ̄1−σ2)+log(σ̄1− σ̄2)) . (40)

In terms of these correlation functions, one can easily show that

〈O(σ1, σ̄1)O(σ2, σ̄2)〉 (41)

=
1

2
α′(ky1ky2 + kz1kz2)(log(σ1 − σ2) + log(σ1 − σ̄2) + log(σ̄1 − σ2) + log(σ̄1 − σ̄2))

−ηα′(ky1kz2 − ky2kz1)(log(σ1 − σ̄2) − log(σ̄1 − σ2))

+
1

2
η2α′(ky1ky2 + kz1kz2)(log(σ1 − σ2) − log(σ1 − σ̄2) − log(σ̄1 − σ2) + log(σ̄1 − σ̄2))

for

On(σn, σ̄n) = ikyny′(σn, σ̄n) + iηkznỹ′(σn, σ̄n) − iηkynz(σn, σ̄n) + ikznz̃(σn, σ̄n) . (42)

When these operators are pushed toward the boundary

σ → τ + 0+i , (43)

the correlation function (41) reduces to

〈O(τ1)O(τ2)〉 = 2α′(ky1ky2 + kz1kz2) log(τ1 − τ2) − πiηα′(ky1kz2 − ky2kz1)ǫ(τ2 − τ1) (44)

where ǫ(τ), following the notation of [22], is a function which takes the values ±1 depending

on the sign of τ . The term of order η2 vanishes in this limit. From these results, we conclude

that

〈
∏

eOn(τn)〉 = e
P

m<n〈Om(τm)On(τn)〉 (45)

from which the main statement (6) follows immediately.

Finally, let us discuss the generalization of (6) to D3-brane embedded into Melvin

universe background (2) along the lines of [16, 17]. We will consider the simplest case of

embedding (2) into bosonic string theory. For the Melvin universe background (2), it is

convenient to prepare a vertex operator that corresponds to tachyons in cylindrical basis

V (ν,m,~k) =

∫

dk1 dk2 δ(ν2 − k2
1 − k2

2)e
imθeik1x1(σ,σ̄)+k2x2(σ,σ̄)+~k~x(σ,σ̄)

= ei~k~x(σ,σ̄)Jν(r(σ, σ̄))eimϕ(σ,σ̄) (46)

where

r2 = x2
1 + x2

2, ϕ = arg(x1 + ix2), θ = arg(k1 + ik2) . (47)

As long as ~k2 + ν2 are taken to satisfy the on-shell condition of the tachyon, (46) is

linear combination of operators of boundary conformal dimension 1, and must itself be an

– 6 –
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operator of boundary conformal dimension one. Such construction of vertex operator as a

linear superposition is similar in spirit to what was considered in [30, 31].

S =
1

2πα′

∫

dσ1dσ2

[

1

2
δab

(

∂ar∂br + r2∂aϕ∂bϕ + 2ηr2∂aϕVb+(1 + η2r2)VaVb

)

+iǫab∂az̃Vb

]

(48)

on the upper half plane. Integrating out z̃ brings this action to the form appropriate for

the analogue of II

S =
1

2πα′

∫

dσ1dσ2

[

1

2
δab

(

∂ar∂br + r2∂aϕ∂bϕ + 2ηr2∂aϕ∂bz + (1 + η2r2)∂az∂bz
)

]

.

(49)

The vertex operators can be represented as a source term

e−Ssource =
∏

n

Jvn(r(σn, σ̄n))eimnϕ(σn,σ̄n)+ikznz̃(σn,σ̄n) (50)

where z̃ is a disorder operator. Now, if we let

ϕ′(σ, σ̄) = ϕ(σ, σ̄) + ηz(σ, σ̄) , (51)

the action becomes

S =
1

2πα′

∫

dσ1dσ2

[

1

2
δab

(

∂ar∂br + r2∂aϕ
′∂bϕ

′ + ∂az∂bz
)

]

(52)

with

e−Ssource =
∏

n

Jvn(r(σn, σ̄n))eOn (53)

and

On = imnϕ′(σn, σ̄n) + iηkznϕ̃′(σn, σ̄n) − iηmnz(σn, σ̄n) + ikznz̃(σn, σ̄n) (54)

where

ϕ̃′(σ, σ̄) (55)

is the disorder field for ϕ′ satisfying the relation

∂aϕ̃′ = iǫabr2∂bϕ
′ (56)

which follows naturally from the Busher rule applied to the ϕ fields.

This time, the problem is slightly complicated by the fact that (r, ϕ′) sector is inter-

acting. It is still the case that (ϕ′, z) sector, for some fixed r(σ, σ̄), is non-interacting. We

will exploit this fact and do the path integral in the order where we integrate over ϕ′ and

z first. The two point function of ϕ′ formally has the form

〈ϕ′(σ1, σ̄1)ϕ
′(σ2, σ̄2)〉 = (∂r2(σ, σ̄)∂)−1 . (57)

Then, it follows that

〈ϕ′(σ1, σ̄1)∂
aϕ̃′(σ2, σ̄2)〉 = iǫab(∂b)−1 (58)

– 7 –
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from which it follows

〈ϕ̃′(σ1, σ̄1)ϕ
′(σ2, σ̄2)〉 = −

1

2
α′(log(σ1−σ2)+log(σ1− σ̄2)− log(σ̄1−σ2)− log(σ̄1− σ̄2)) (59)

in complete analogy with (36). The correlator (59) tells us that while the field-field corre-

lator 〈ϕ′ϕ′〉 is complicated and r dependent, the field/disorder field correlator 〈ϕ̃′ϕ′〉 stays

simple and topological.

We can then proceed to compute the analogue of (44) and (45) for the operator (54) in

the (ϕ′, z) sector. While we do not explicitly compute the 〈ϕ̃′ϕ̃′〉 correlator which appear

at order η2 in (44), it is clear that the boundary condition forces this term to vanish as

was the case in the earlier example. The term of order η in the exponential can be made

to take the Moyal-like form

e
i
2

P

a<b(2π∆)(makzb−kzamb)ǫ(τb−τa) (60)

which is finite in the scaling limit α′ → 0 with

η =
∆

α′
(61)

keeping ∆ finite. This is precisely the scaling considered in [16, 17]. The dependence on

r(σ, σ̄) drops out for this term of order η, allowing us to further path integrate over this field

trivially, with the only effect of η being the overall phase factor (60). This establishes that

the decoupled theory of D-branes in Melvin universes considered in [16, 17] has an effective

dynamics which includes the Moyal-like phase factor involving the angular momentum

quantum number m and the momentum kz. In Cartesian coordinates, this Moyal phase

corresponds to a position dependent non-commutativity [16, 17]. This analysis extends

straight forwardly to other simple models of position dependent non-commutativity, such

as5 the “Melvin Null Twist” [15] and “Null Melvin Twist” [32]. It would be interesting to

extend this analysis to superstrings and to consider the scattering of states other than the

open string tachyon.
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